报告题目:Chernoff Bound for Quantum Operations is Faithful
报 告 人:俞能昆
报告时间:2020年12月12日下午14:00
腾讯会议 ID:991 756 994
报告摘要:We consider the problem of testing two quantum hypotheses of quantum operations in the setting of many uses where an arbitrary prior distribution is given. The concept of the Chernoff bound for quantum operations is investigated to track the minimal average probability of error of discriminating two quantum operations asymptotically. We show that the Chernoff bound is faithful in the sense that it is finite if and only if the two quantum operations can not be distinguished perfectly. More precisely, upper bounds of the Chernoff bound for quantum operations are provided. We then generalize these results to multiple Chernoff bound for quantum operations.
报告人简介:俞能昆,悉尼科技大学博士生导师,2013年博士毕业于清华大学计算机科学与技术系,目前在悉尼科技大学量子信息中心工作,发表论文40多篇,主持多个研究项目,包括澳大利亚arc两个项目。2018年获澳大利亚科学院的拉塞尔奖,2020年11月获oopsla会议的优秀论文奖。
----------------------------------------------------------------------------------------------------------
报告题目: 量子态的非相干序
报 告 人:杜拴平
报告时间:2020年12月13日上午10:00
腾讯会议 ID:610 254 010
报告摘要:As an important quantum resource, quantum coherence play key role in quantum information processing. It is often concerned with manipulation of families of quantum states rather than individual states in isolation.Given two pairs ofcoherent states $(\rho_1,\rho_2)$ and $(\sigma_1,\sigma_2)$, we are aimed to study how can we determine if there exists a strictly incoherent operation $\Phi$ such that $\Phi(\rho_i) =\sigma_i,i = 1,2$.This is also a classic question in quantum hypothesis testing.In this note, structural characterization of coherent preorder under strongly incoherent operations is provided.
报告人简介:杜拴平,厦门大学数学科学学院教授,美国数学会评论员。2005年在香港大学的资助下访问了香港大学数学系;2006年在科技部国际合作项目资助下访问了斯洛文尼亚;2014/7-2015/7访问了加拿大贵湖大学与滑铁卢大学。目前在研(主持)国家自然科学基金面上项目一项,主持完成福建省自然科学基金面上项目一项,主持完成中央高校科研项目一项,主持完成福建省青年人才项目一项,主持完成山西省青年科技研究基金一项。